Mechanism of the pH-Controlled Self-Assembly of Nanofibers from Peptide Amphiphiles
نویسندگان
چکیده
Stimuli-responsive, self-assembling nanomaterials hold a great promise to revolutionize medicine and technology. However, current discovery is slow and often serendipitous. Here we report a multiscale modeling study to elucidate the pH-controlled self-assembly of nanofibers from the peptide amphiphiles, palmitoyl-I-A3E4-NH2. The coarse-grained simulations revealed the formation of random-coil based spherical micelles at strong electrostatic repulsion. However, at weak or no electrostatic repulsion, the micelles merge into a nanofiber driven by the β-sheet formation between the peptide segments. The all-atom constant pH molecular dynamics revealed a cooperative transition between random coil and β-sheet in the pH range 6-7, matching the CD data. Interestingly, although the bulk pKa is more than one unit below the transition pH, consistent with the titration data, the highest pKa's coincide with the transition pH, suggesting that the latter may be tuned by modulating the pKa's of a few solvent-buried Glu side chains. Together, these data offer, to our best knowledge, the first multiresolution and quantitative view of the pH-dependent self-assembly of nanofibers. The novel protocols and insights gained are expected to advance the computer-aided design and discovery of pH-responsive nanomaterials.
منابع مشابه
The internal structure of self-assembled peptide amphiphiles nanofibers{
The self-assembly of peptide amphiphiles (PAs) into nanofibers and their bioactivity as well as physical properties have been investigated by our laboratory over the past few years. We report here on the use of transmission infrared spectroscopy (IR) and polarization modulation-infrared reflection-absorption spectroscopy (PM-IRRAS) to characterize the internal structure of the nanofibers. Depos...
متن کاملSelf-assembly and applications of biomimetic and bioactive peptide- amphiphiles
Peptide-amphiphiles are amphiphilic structures with a hydrophilic peptide headgroup that incorporates a bioactive sequence and has the potential to form distinct structures, and a hydrophobic tail that serves to align the headgroup, drive self-assembly, and induce secondary and tertiary conformations. In this paper we review the different self-assembled structures of peptide-amphiphiles that ra...
متن کاملTuning the pH-triggered self-assembly of dendritic peptide amphiphiles using fluorinated side chains.
We report the synthesis of a series of anionic dendritic peptide amphiphiles of increasing hydrophobic character. By establishing state diagrams we describe their pH and ionic strength triggered self-assembly into supramolecular nanorods in water and highlight the impact of hydrophobic shielding in the supramolecular polymerisation process. Via the incorporation of fluorinated peptide side chai...
متن کاملSelf-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials.
Peptide amphiphiles are a class of molecules that combine the structural features of amphiphilic surfactants with the functions of bioactive peptides and are known to assemble into a variety of nanostructures. A specific type of peptide amphiphiles are known to self-assemble into one-dimensional nanostructures under physiological conditions, predominantly nanofibers with a cylindrical geometry....
متن کاملpH and Amphiphilic Structure Direct Supramolecular Behavior in Biofunctional Assemblies
Supramolecular self-assembly offers promising new ways to control nanostructure morphology and respond to external stimuli. A pH-sensitive self-assembled system was developed to both control nanostructure shape and respond to the acidic microenvironment of tumors using self-assembling peptide amphiphiles (PAs). By incorporating an oligo-histidine H6 sequence, we developed two PAs that self-asse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 118 شماره
صفحات -
تاریخ انتشار 2014